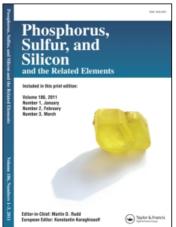
This article was downloaded by:


On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

SYNTHESIS AND CHARACTERIZATION OF PHOSPHINIC AND PHOSPHATE COMPLEXES OF GALLIUM(III) AND INDIUM(III)

Dimple Pahari Dutta^a; Vimal K. Jain^a

^a Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India

To cite this Article Dutta, Dimple Pahari and Jain, Vimal K.(2000) 'SYNTHESIS AND CHARACTERIZATION OF PHOSPHINIC AND PHOSPHATE COMPLEXES OF GALLIUM(III) AND INDIUM(III)', Phosphorus, Sulfur, and Silicon and the Related Elements, 166: 1, 15-26

To link to this Article: DOI: 10.1080/10426500008076528 URL: http://dx.doi.org/10.1080/10426500008076528

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND CHARACTERIZATION OF PHOSPHINIC AND PHOSPHATE COMPLEXES OF GALLIUM(III) AND INDIUM(III)

DIMPLE PAHARI DUTTA and VIMAL K. JAIN*

Novel Materials and Structural Chemistry Division, Bhabha Atomic Research
Centre, Mumbai-400 085, India

(Received February 08, 2000; In final form May 31, 2000)

Gallium(III)/Indium(III) complexes of the type $[GaCl_N(O_2PPh_2)_{3.N}]$, $[GaCl_N(O_2PO_2Ph_2)_{3.N}]$, $[GaCl_N(O_2PO_2Ph_2)_{3.N}]$ and $[In(O_2PR_2)_3]$ (R=Ph or OBu^n) (where N=0, 1 or 2) were synthesized by the reactions of $GaCl_3/InCl_3$ with Ph_2POONa or $[(Bu^{nt}O)_2POOK/1/2Pb]$ or $[(Bu^nO)_2POOH]$ and Et_3N in benzene. They were characterized by elemental analysis, IR and $NMR(^1H, ^{13}C(^1H))$ and $^{31}P(^1H)$ data. *Keywords*: Gallium, Indium, Diphenylphosphinates, Dibutylphosphates, IR spectra, NMR spectra.

INTRODUCTION

There is an increasing interest in metal phosphates due to their relevance in biology and materials science^{1,2} as they imitate zeolites. The chemistry of oxy- and thiophosphate ligands has received considerable attention in recent years³. The stereochemistry of these molecules shows remarkable variation from discrete monomeric units to associated or supramolecular structures^{3b-3f}. The organotin chemistry with these ligands also demonstrated that this class of ligands are excellent candidates to stabilize diverse stereochemistries of organotins³. Except a few organogallium/indium complexes with oxyphosphorous acids, much attention was focussed on thiophosphorous ligands⁴⁻¹⁰. Organogallium complexes with acids dimeric phosphinic are mostly molecules,

^{*} Corresponding Author.

[{Bu^t₂Ga(μ-O₂PPh₂)}₂]¹¹ and [{Me₂Ga(O₂PPh₂)}₂]¹². The organoindium complexes with phosphinic acids are associated molecules which are either dimeric, such as [{Me₂In(O₂PPh₂)}₂], or tetrameric clusters as in the case of [{InMe(OH)(O₂PPh₂)}₄(py)₄]¹³. Synthesis of molecular gallium phosphonates involving a bulkier substituent (*tert*-butyl group) appeared in the literature ^{14,15}. It was shown by Mason *et. al.* ¹⁴, that, owing to bulkiness of *tert*-butyl group on gallium, it was possible to isolate and structurally characterize cyclic gallium phosphonate. Efforts have also been made to synthesize indium phosphonates with open structure ^{16,17}. In pursuance of our interest in the chemistry of Group 13 elements with phosphorous based acids, we have synthesized and characterized a series of diphenylphosphinate and di-n/t-butylphosphates of gallium(III) and indium(III).

RESULTS AND DISCUSSION

Treatment of GaCl₃ or InCl₃ with sodium salt of diphenylphosphinic acid in 1:3 stoichiometry in benzene yields tris-diphenylphosphinates $[M(O_2PPh_2)_3]$ [M= Ga (1) or In (2)] as an insoluble white solid (eqn. 1). Reaction of MCl₃ with $[(Bu^nO)_2PO_2H]$ in the presence of triethylamine affords $[M\{O_2P(OBu^n)_2\}_3]$ [M= Ga (4) and In (5)] (eqn. 2). The solubility of the tris complex, $[Ga\{O_2P(OBu^l)_2\}_3]$ (9) in organic solvents, enabled us to synthesize it by the reaction of gallium trichloride with $K[O_2P(OBu^l)_2]$ (eqn. 3). A few chloro gallium complexes $[GaCl_{3-N}(O_2PR_2)_N]$ (N = 1 or 2) (eg. 3) have been prepared either by redistribution reaction (eqn. 4) or by substitution of chloride in $GaCl_3$ with potassium or lead salts of the acid (eqn. 5) (eg. 6,7,8). Attempts to prepare $[GaCl_2(O_2PPh_2)_2]$ by redistribution reaction leads to the formation of $[GaCl_2(O_2PPh_2)_2]$ and 1 (eqn. 6). Attempts to isolate $[GaCl_2\{O_2P(OBu^l)_2\}]$ employing reaction 5 leads to excessive decomposition.

$$MCl_3 + 3NaO_2PPh_2 \longrightarrow [M(O_2PPh_2)_3] + 3NaCl$$
 ...(1)

$$[M = Ga(1); In(2)]$$

$$MCl_3 + 3(Bu^nO)_2POOH + 3Et_3N \longrightarrow [M\{O_2P(OBu^n)_2\}_3] + 3Et_3N.HCl$$

$$[M = Ga(4); In(5)] \qquad \dots (2)$$

$$GaCl_3 + 3K[O_2P(OBu^t)_2] \longrightarrow [Ga\{O_2P(OBu^t)_2\}_3] + 3KCl . (3)$$
(9)

$$2GaCl_3 + Ga(O_2PPh_2)_3 \longrightarrow 3[GaCl_2(O_2PPh_2)] \qquad \dots (4)$$
(3)

$$GaCl_3+1/2N[Pb\{O_2P(OBu^n)_2\}_2]/N[KO_2P(OBu^t)_2]$$

$$\longrightarrow [GaCl_{3-N}\{O_2P(OBu^x)_2\}_N] \qquad ...(5)$$

$$(x = n \text{ or } t)$$

$$2 Ga(O_2 PPh_2)_3 + GaCl_3 \longrightarrow 3 [GaCl(O_2 PPh_2)_2] \longrightarrow 3/2(1) + 3/2(3) \\ \dots (6)$$

The tris diphenylphosphinate complexes 1 and 2 are white solids insoluble in all common organic solvents whereas the dichloro complex 3 is a white crystalline solid. The ν P-O were assigned by comparison with the IR spectra of diphenylphosphinic acid and its compounds $^{12,18-20}$. The tris and dichloro complexes showed ν P-O in the region 1169-1058 cm⁻¹. In the case of di-n-butylphosphate complexes 4, 5, 6 and 7, strong broad bands were observed in the region 1200-1035 cm⁻¹ in the IR spectra which were assigned to ν P-O and ν P=O stretchings. For the di-t-butylphosphate complexes 8 and 9, the spectra showed ν P=O at 1254 ± 2 cm⁻¹ and ν P-O at 1043 cm⁻¹. The presence of a number of bands in the region 600-250 cm⁻¹due to the alkyl/phenyl groups in all the complexes 1 to 9, thwarted unambiguous identification of ν Ga-Ol, ν Ga-O and ν In-O bands.

The $^{31}P\{^{1}H\}$ NMR spectra of 3 in CDCl₃solution exhibited a single resonance and appeared at higher frequency compared to the resonance of diphenylphosphinic acid (Table I). Attempts to prepare a monochloro complex [GaCl(O_2PPh_2)₂], by a redistribution reaction (eqn. 6) results in disproportionation. Thus the reaction of GaCl₃ with 1 in CDCl₃ was monitored by $^{31}P\{^{1}H\}$ NMR spectroscopy. Initially a nearly clear solution formed which showed three sharp resonances (δ 35.3, δ 26.9 and δ 18.7 ppm). This solution after a few hours became turbid and displayed a resonance assignable to 3. The white precipitate isolated from this was identified as the tris complex 1 (see experimental). The $^{31}P\{^{1}H\}$ NMR spectra of dibutylphosphate chloro complexes 6, 7 and 9 showed single resonances which appeared at higher field compared to the free ligands or potassium salt. The solid state $^{31}P\{^{1}H\}$ NMR spectra of tris complexes, 1,

2, 4 and 5 were recorded because of their insolubility in common organic solvents. The spectra exhibited single resonances which are shielded relative to the corresponding resonance for the acids. The shielding was more pronounced in gallium complexes than that of the corresponding indium derivatives. Similarly shielding of ³¹P{¹H} NMR signal for 8 was observed.

The ¹H and ¹³C NMR spectra of these complexes show characteristic resonances due to the alkoxy/phenyl protons/carbons at room temperature (Table I). The ¹³C{¹H} resonances for the diphenylphosphinate group appeared as doublets due to $^{n}J(^{31}P_{-}^{13}C)$ couplings. The magnitudes of these couplings are of the order of $^{1}J(^{31}P_{-}^{13}C)$ ~135 Hz, $^{2}J(^{31}P_{-}^{13}C)$ ~13 Hz, $^{3}J(^{31}P_{-}^{13}C)$ ~10 Hz and $^{4}J(^{31}P_{-}^{13}C)$ <3 Hz. As compared to diphenylphosphinic acid, the C-4 resonance in 3 showed broad peak instead of a doublet. For the di-n-butylphosphate complexes (*viz.* 6 and 7), $J(^{31}P_{-}^{13}C)$ couplings were observed for α and β carbons of n-butyl group in the free ligand and in the complexes.

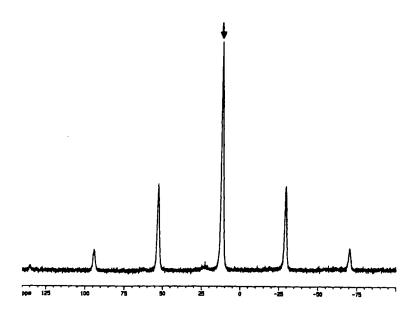


FIGURE 1 Solid state $^{31}P\{^{1}H\}$ NMR spectrum (spinning rate 5000 Hz) of 1. \downarrow indicates central band

Downloaded At: 13:04 28 January 2011

TABLE I ¹H, ¹³C(¹H) and ³¹P(¹H) NMR and IR spectral data for gallium and indium complexes

	31P(1H) NMR &	VMR S			10 abcoming in the region
Complex	Solution in CDCl ₃	Solid	''SC 'HJ NMR &	'H NMR in CDCI ₃ δ	600–300 cm ^{–1}
Ph ₂ P(O)OH	33.2	27.6	128.2 (d, 13.5 Hz) C 3.5; 131.3 (d, 10.3 Hz) C-2,6; 131.7 (d, 2.7 Hz) C-4; 133.1 (d, 140 Hz) C-1.	6.90 (br)/OH; 7.28–7.39 (m), 7.60-7.70 (m) [Ph].	555, 526, 473, 435, 419, 398 375, 352, 335, 327, 315, 302.
$[Ga(O_2PPh_2)_3]$ (1)	ı	11.9	1	ı	568, 558, 533, 461, 421, 404. 389, 319, 303.
$[In(O_2PPh_2)_3]$ (2)	1	21.5	ı	ı	561, 527, 436, 358, 333, 309.
[GaCl ₂ (O ₂ PPh ₂)] (3)	35.3	ı	128.9 (d, 14.4 Hz) C-3,5; 131.5 (d, 11.9 Hz) C-2,6; 131.3 (d, 152 Hz) C-1; 133.4 (br) C-4.	7.42–7.48 (m), 7.55–7.61 (m), 7.69–7.77 (m) (2:1:2) [Ph].	599, 551, 534, 464, 444, 414, 374, 323, 306.
[(Bu ⁿ O) ₂ POOH]	1.2	1	13.4 (s, OCH ₂ CH ₂ CH ₂ Me); 18.7 (s,OCH ₂ CH ₂ CH ₂); 32.3 (d,7 Hz, OCH ₂ CH ₂); 67.4 (d,5.6 Hz,OCH ₂).	0.91(1,7.3Hz,OCH ₂ CH ₂ CH ₂ Me); 1.39 (m,OCH ₂ CH ₂ CH ₂); 1.63 (m,OCH ₂ CH ₂); 4.01 (q, 6.8 Hz OCH ₂); 11.56 (br, OH).	518, 472, 419, 398, 375, 352, 327, 303.
[Pb{O ₂ P(OBu ⁿ) ₂ } ₂]	-0.3		13.7 (s, OCH ₂ CH ₂ CH ₂ Me); 19.0 (s, OCH ₂ CH ₂ CH ₂); 32.8 (d, 7.8 Hz, OCH ₂ CH ₂); 66.2 (d, 5.6 Hz, OCH ₂ CH ₂).	0.92 (t, 7.3 Hz,OCH ₂ CH ₂ CH ₂ M <u>e</u>); 1.40 (sextet,5 Hz,OCH ₂ CH ₂ CH ₂): 1.62 (pentate, 7.4 Hz,OCH ₂ CH ₂); 3.95 (quartet, 6.3 Hz, OCH ₂).	559. 535, 475, 451, 429, 385, 304.
$[Ga\{O_2P(OBu^n)_2\}_3]$ (4)	ı	-12.3	1	1	558, 518, 472, 315, 302.

	31P(1H) NMR &	VMR 8			q.
Complex	Solution Solid in CDCl ₃	Solid	'sCl'HJ NMR 8	'H NMR in CDCI ₃ δ	600–300 cm ⁻¹
[In{O ₂ P(OBu ⁿ) ₂ } ₃] (5)		-8.1			559, 526, 473, 419, 397, 352. 325, 303.
[GaCl{O ₂ P(OBu ⁿ) ₂ } ₂] -7.0 (6)	-7.0	1	13.5 (s, -OCH ₂ CH ₂ CH ₃ <u>Me</u>); 18.7 (s, -OCH ₂ CH ₂ CH ₂); 32.3 (d, 6.2 Hz, OCH ₂ CH ₂); 68.4 (br, -O <u>C</u> H ₂)	0.90 (dt, -OCH ₂ CH ₂ CH ₂ Me); 1.35 (m, -OCH ₂ CH ₂ CH ₂); 1.65 (m, - OCH ₂ CH ₂); 3.95 (br, -OCH ₂)	522(br). 474, 391, 361. 303.
[GaCl ₂ {O ₂ P(OBu ⁿ) ₂ }] -10.0 (7)	-10.0	1	13.4 (s,-OCH ₂ CH ₂ CH ₂ M <u>a</u>):18.6 (s,-OCH ₂ CH ₂ CH ₂); 32.0 (d, 7.15 Hz,- OCH ₂ CH ₂); 69.8 (br,-OCH ₂)	0.95 (t,7.4Hz,-OCH ₂ CH ₂ CH ₂ Me); 1.45 (m,-OCH ₂ CH ₂ CH ₂); 1.71 (m,-OCH ₂ CH ₂); 4.15 (q, 6 Hz. OCH ₂).	526, 472, 399, 359.
K{O ₂ P(OBu ^t) ₂ } ^a	4.9	ı	30.1 (s, OC <u>Me</u> 3); 78.8 (d, 6.9 Hz, O <u>C</u> Me ₃)	1.37 (s, OC <u>Me</u> 3)	584, 546, 495, 461, 398, 353, 326, 307.
[Ga[O ₂ P(OBu ¹) ₂] ₃] (8) -7.1	-7.1	1	30.0 (d, 3.3Hz, -OC <u>Me₃);</u> 81.1 (br, O <u>C</u> Me ₃)	1.48 (s, OC <u>Me</u> 3)	419, 398, 375, 352, 335, 327, 303.
[GaCl{O ₂ P(OBu ¹) ₂ } ₂] ^b -8.4 (9)	-8.4	1	30.1 (OC <u>Me</u> 3): 82.0 (br,O <u>C</u> Me3)	1.47 (s,-OC <u>Me</u> 3)	485, 397, 375, 357, 342, 303.

a. in D₂O.

Downloaded At: 13:04 28 January 2011

TABLE II Yield and analytical data for Ga(III)/In(III) diphenylphosphinic and dibutylphosphate complexes

	3403000	()o 2)	Deadace (vield in a 02)	Sol a M	% Ана	% Analysis Found (calcd.)	alcd.)
•	eac mans	Neachains (8, minor)	roduci (şieid ili Ş. 70)	, (C) (C)	S	Н	Ga/In
GaCl ₃ (0.69, 3.92)	+	Ph ₂ POONa (2.85, 11.87)	[Ga(O ₂ PPh ₂) ₃] (1) (2.14, 75)	>240	59.7 (59.9)	4.1 (4.2)	9.6 (9.7)
InCl ₃ (0.61, 2.76)	+	Ph ₂ POONa (1.97, 8.20)	$[In(O_2PPh_2)_3]$ (2) (1.82, 87)	>225	55.5 (56.4)	3.9 (3.9)	14.9 (15.0)
GaCl ₃ (0.16, 0.88)	+	[Ga(O ₂ PPh ₂) ₃] (0.32, 0.44)	[$GaCl_2(O_2PPh_2)$] (3) (0.47, 98)	135 – 137	39.9 (40.2)	2.8 (2.8)	19.5 (19.5)
GaCl ₃ (0.53, 3.(+ Et ₃ N +	GaCl ₃ + Et ₃ N + (Bu ⁿ O) ₂ POOH (0.53, 3.01) (0.92, 9.09) (1.91, 9.09)	[Ga{ $O_2P(OBu^n)_2$ } ₃] (4) (1.73, 82)	>225	40.6 (41.3)	7.6 (7.8)	9.9 (10.0)
InCl ₃ (0.63, 2.8	+ Et ₃ N + 35) (0.87	InCl ₃ + Ei ₃ N + (Bu ⁿ O) ₂ POOH (0.63, 2.85) (0.87, 8.60) (1.81, 8.62)	[In{O ₂ P(OBu ⁿ) ₂ } ₃] (5) (1.69, 79)	>225	38.6 (38.8)	6.9 (7.3)	15.3 (15.5)
GaCl ₃ (0.55, 3.12)	+	{(Bu ⁿ O) ₂ POO} ₂ Pb (1.96, 3.13)	[GaCl{O ₂ P(OBu ⁿ) ₂) ₂] (6) (1.01, 62)	liquid		!	13.2 (13.3)
GaCl ₃ (0.49, 2.78)	+	{(Bu ⁿ O) ₂ POO} ₂ Pb (0.89, 1.42)	$[GaCl_2\{O_2P(OBu^n)_2\}]$ (7) (0.98, 99)	liquid			19.9 (19.9)
GaCl ₃ (0.49, 2.78)	+	(Bu ^l O) ₂ POOK (2.09, 8.42)	[Ga{O ₂ P(OBu¹ _{1₂}₃] (8) (1.01, 52)}	liquid	•	!	9.8 (10.0)
GaCl ₃ (0.62, 3.52)	+	(Bu ^t O) ₂ POOK (1.75, 7.05)	[GaCl{O ₂ P(OBu ¹) ₂ } ₂] (9)	eg .			13.2 (13.3)

a. Gas evolution occured in the temperature range 60-80°C.

In order to isolate mixed ligand complexes, a few reactions of 3 with some thio ligands were investigated. Reactions of 3 with ammonium diethyldithiophosphate $NH_4[S_2P(OEt)_2]$ gave disproportionation products $[Ga\{S_2P(OEt)_2\}_3]$ and 1 (insoluble). Reaction of sodium salt of 2-mercaptoethylether with $GaCl_3$, followed by treatment with sodium diphenylphosphinate gave $[Ga(O_2PPh_2)\{SCH_2CH_2)_2O\}$].

Extensive work on groups IV and V complexes of phosphorous based acids has revealed that these ligands bind the metal atom in several different ways³. The gallium and indium complexes with dithio acid ligands, e.g. xanthates^{21a}, dithiocarbamates^{21b} and dithiophosphates^{8,9}, are discrete mononuclear species with chelating ligands. X-ray structural studies on organometallic complexes of gallium and indium with [PO₃]⁻¹¹⁻¹⁵ have revealed their associated structures. It can be tentatively inferred from the above discussion that the tris complexes (1, 2, 4 and 5) are associated molecules while complex 8 may be a tris chelate. The high solubility of the chloro complexes (3, 6, 7, 9) in organic solvents and the presence of single set of resonances in NMR spectra suggest that they may be monomeric in solution with chelating ligands.

EXPERIMENTAL

All experiments using organic solvents were performed under anhydrous conditions in a nitrogen atmosphere using Schlenck techniques. Pertinent data of these compounds are given in Table II. High purity (99.999%) GaCl₃ and InCl₃were used as received from Trans Metal. Diphenylphosphinic acid [Ph₂P(O)OH] was prepared by oxidation of Ph₂PCl (Aldrich) with a mixture of HNO₃/H₂O₂ and then recrystallized from ethanol as white prismatic crystalline solid (m.p. 91°C)²². Potassium di-tert-butylphosphate K[O₂P(OBu¹)₂] was prepared according to literature method^{23,24}. Di-n-butylphosphate was obtained from Fluka. Infrared spectra were recorded either as neat liquids or as Nujol mulls between CsI plates on a Bomem MB-102 FT IR spectrometer. The NMR spectra (¹H, ¹³C{¹H} and ³¹P{¹H}) were recorded on a Bruker DPX-300 NMR spectrometer in 5mm tube in CDCl₃ solutions using freshly prepared samples. The chemical shifts were referenced to the internal chloroform peak (δ 7.26 and δ 77.0 ppm) for ¹H and ¹³C{¹H} NMR respectively and external

85% H₃PO₄ for ³¹P{¹H}. The solid state ³¹P{¹H} NMR spectra were recorded in 7 mm zircona rotor with a CP Mass probe head with at least three different spinning rates and were referenced with sodium dihydrogen phosphate.

Preparation of $[Ga(O_2PPh_2)_3]$ (1)

A methanolic solution (20 ml) of Ph₂PO₂H (2.589g, 11.87 mmol) was added to sodium methoxide (prepared from 273 mg Na in 20 ml methanol). Reactants were stirred at RT for 2 h. The solvent was evaporated *in vacuo* to leave a white solid [NaO₂PPh₂]. The sodium salt was suspended in benzene (50 ml) and a benzene solution (20 ml) of GaCl₃ (696 mg, 3.95 mmol) was added with stirring which was continued for 4h. The white solid was filtered, washed several times with dry methanol until the washings were free from sodium chloride. The white solid was then dried in vacuum (yield 2.14 g, 75%).

Similarly [In(O₂PPh₂)₃] (2) was prepared in 87% yield.

Attempted preparation of [GaCl(O2PPh2)2]

To a benzene suspension (20 ml) of $[Ga(O_2PPh_2)_3]$ (3.87 g, 5.37 mmol), a solution of $GaCl_3$ (470 mg, 2.68 mmol) in benzene was added and stirred under nitrogen for 3h. Initially a clear solution was formed from which a white solid precipitated out gradually (completes in 50 hrs). This was filtered to give a white solid (3.28 g, Analysis-Found: C,59.8; H,4.0; Ga, 9.6%; Calcd. for $C_{36}H_{30}O_6P_3Ga$: C,59.9; H,4.2; Ga, 9.7%) and was characterized as $[Ga(O_2PPh_2)_3]$. The filtrate on evaporation under reduced pressure gave a white solid (430 mg) m.p. 135–137°C. Analysis- Found: C, 39.9; H, 2.6; Ga, 19.5%; Calcd. for $C_{12}H_{10}Cl_2O_2PGa$: C, 40.2; H, 2.8; Ga, 19.5%) and was identified as $[GaCl_2(O_2PPh_2)]$.

Preparation of [GaCl₂(O₂PPh₂)] (3)

To a benzene solution (20 ml) of $GaCl_3$ (160 mg, 0.88 mmol), $[Ga(O_2PPh_2)_3]$ (320 mg, 0.44 mmol) suspension (50 ml) in benzene/dichloromethane was added and stirred for 4 hr under nitrogen, whereupon a clear solution formed. The solvents were evaporated *in vacuo*

to give a white solid (470 mg, 98% yield). It was recrystallized from CDCl₃/toluene mixture to yield white crystals which turned powdery on removing the solvent.

Preparation of [Ga{O₂P(OBuⁿ)₂}₃] (4)

To a benzene solution of Et₃N (920 mg, 9.09 mmol) and GaCl₃ (530 mg, 3.03 mmol), (BuⁿO)₂PO₂H (1.91 g, 9.09 mmol) solution in benzene was added dropwise with vigorous stirring. The mixture was stirred for 2 h and then filtered through a G-3 filtration unit using a suction pump. The residue was washed repeatedly with dichloromethane to remove Et₃N.HCl. until the filtrate gave a negative test for the presence of chloride ion. The white solid residue in the filtering funnel was dried (yield 1.73 g, 82%).

 $[\ln{\{O_2P(OBu^n)_2\}_3}]$ (5) was prepared (79% yield) using a similar method.

Preparation of $[GaCl_2{O_2P(OBu^n)_2}]$ (7)

To a benzene solution of [{(BuⁿO)₂PO₂}₂Pb] (899 mg, 1.41 mmol), a benzene solution of GaCl₃ (490 mg, 2.82 mmol) was added in a Schlenck tube. The mixture was stirred for 3h and then filtered to remove PbCl₂. The benzene was evaporated from the clear filtrate under reduced pressure to give an oily residue.

Similar method was used to prepare $[GaC1\{O_2P(OBu^n)_2\}_2]$ (6).

Preparation of [Ga{O₂P(OBu^t)₂}₃] (8)

To a benzene suspension of K[O₂P(OBu^t)₂] (2.09 g, 8.45 mmol), a benzene solution of GaCl₃ (0.49 gm, 2.82 mmol) was added and stirred under nitrogen for 3h. It was filtered through a G-3 filtration unit using a suction pump. The clear filtrate was evporated *in vacuo* to give an oily liquid which was characterized immediately (decomposes on keeping for some time at room temperature).

Preparation of $[GaCl{O_2P(OBu^t)_2}_2]$ (9)

To a benzene solution of $GaCl_3$ (620 mg, 3.52 mmol), a benzene suspension of $K[O_2P(OBu^1)_2]$ (1.75 g, 7.05mmol) was added and stirred for 3h under nitrogen. It was filtered through a G-3 filtration unit using a suction pump and the filtrate was evaporated under reduced pressure. A solid was obtained which being prone to decomposition was characterized immediately.

Reaction between 3 and NH₄[S₂P(OEt)₂]

To a benzene solution (20 ml) of **3** (476 mg, 1.33 mmol), solid NH₄[S₂P(OEt)₂] (543 mg, 2.66 mmol) was added and the solution was stirred for 4 hr at room temperature. It was filtered through a G-3 filtration unit using suction pump. The filtrate on concentration gave [Ga{S₂P(OEt)₂}₃] [¹H NMR: δ 1.30 (t, 7Hz, OCH₂Me); δ 4.19 (dq, 7Hz, (q); 9.9 Hz (d) OCH₂-), ³¹P NMR: δ 91.4 ppm]. NH₄Cl was removed from the residue by dissolving in excess dry methanol. The white insoluble solid was characterized as [Ga(O₂PPh₂)₃]. [Analysis- Found: C, 59.6; H, 4.1; Ga, 9.5% Calcd. for C₃₆H₃₀O₆P₃Ga; C, 59.8, H, 4.2; Ga, 9.7%].

Reaction between [(NaSCH2CH2)2O], GaCl3 and Ph2PO2Na

[GaCl{(SCH₂CH₂)₂O}], prepared by stirring a benzene solution of GaCl₃ (912 mg, 5.18 mmol) and [(NaSCH₂CH₂)₂O] [(HSCH₂CH₂)₂O (716 mg, 5.18 mmol) and sodium (238 mg) in methanol and then dried in vacuo)] for 3 hrs, was treated with NaO₂PPh₂ [prepared from Ph₂P(O)OH (1.129g, 5.18 mmol) and sodium (119 mg) in methanol. The whole was stirred at room temperature for 3 hrs. Precipitated sodium chloride was filtered off and the filtrate was concentrated in vacuo to give a white solid (2.2 g, 99% yield). It was recrystallized from CH₂Cl₂ to yield white crystals which turned powdery on removing the solvent. Analysis-Found: C,44.9; H,4.3; Ga,16.4%. Calcd. for C₁₆H₁₈GaO₃PS₂: C, 45.2; H,4.3; Ga,16.4%. ³¹P NMR: δ 23.9 ppm.

Acknowledgements

The authors thank Dr. J.P. Mittal, Director, Chemistry Group and Dr. Prithviraj, Head, Novel Materials and Structural Chemistry Division, B.A.R.C.,

for encouragement of this work. We are grateful to the Head, Analytical Chemistry Division of this research centre for providing microanalysis.

References

- [1] Corbridge, D.E.C., (1995) "Phosphorous. An Outline of its Chemistry, Biochemistry and Technology", 5th Edition, Elsevier, Amsterdam.
- [2] Walawalkar, M. G., Roesky, H.W., Murugavel, R., (1999) Acc. Chem. Res., 32, 117.
- [3] (a) Mehrotra, R.C., Srivastava, G., Chauhan, B.P.S., (1984) Coord. Chem. Rev., 55 207;
 - (b) Holmes, R.R., (1989) Acc. Chem. Res., 22 190;
 - (c) Kumara Swamy, K.C., Day, R.O., Holmes, R.R., (1987) J. Am. Chem. Soc., 109, 5546;
 - (d) Holmes, R.R., Kumara Swamy, K.C., Schmid, C.G., Day, R.O., (1988) J. Am. Chem. Soc., 110, 7060;
 - (e) Day, R.O., Holmes, J.M., Chandrashekhar, V., Holmes, R.R., (1987) J. Am. Chem. Soc., 109, 940;
 - (f) Kumara Swamy, K.C., Schmid, C.G., Day, R.O., Holmes, R.R., (1988) J. Am. Chem. Soc., 110, 7067;
 - (g) Jain, V.K., (1994) Coord. Chem. Rev., 135, 809;
 - (h) Haiduc, I., Sowerby, D.B., Lu, S-F., (1995) Polyhedron, 14, 3389;
 - (i) Silvestru, C., Haiduc, I., (1996) Coord. Chem. Rev., 147, 117;
 - (j) Haiduc, I., (1997) Coord. Chem. Rev., 158, 325;
 - (k) Garje, S.S., Jain, V.K., (1998) Main Group Met. Chem., 22, 77.
- [4] Abram, S., Abram, U., (1988) Inorg. Chim. Acta., 153, 135.
- [5] Loggon, P., Lebedda, J.D., McPhail, A.J., Palmer, R.A., (1970) J. Chem. Soc., Chem. Commun., 78.
- [6] Livingstone, S.T., (1987) Comprehensive Coordination Chemistry, 2, 643. Ed:
 G. Wilkinson, R.D. Gillard, J.A. McCleverty, Pergamon Press.
 [7] Tuck, D.G. (1982) Comprehensive Occapament, Chamistry, 2, 682. Ed. E.W. Abel.
- [7] Tuck, D.G., (1982) Comprehensive Organomet. Chemistry., 2, 683, Ed: E.W. Abel, F.G.A. Stone, G. Wilkinson, Pergamon Press.
- [8] Pahari, D., Jain, V.K., (1997) Main Group Met. Chem., 20, 691.
- [9] Pahari, D., Jain, V.K., Patel, R.P., Main Group Met. Chem., 21 (1998) 261.
- [10] Pahari, D., Jain, V.K. Tiekink, E.R.T., (1998) Main Group Met. Chem., 21, 293.
- [11] Landry, C.C., Hynes, A., Barron, A., Haiduc, I., Silvestru, C., (1996) Polyhedron, 15 391.
- [12] Coates, G.E., Mukherjee, R.N., (1964) J. Chem. Soc., 1295.
- [13] Arif, A.A., Barron, A.R., (1988) Polyhedron, 7, 2091.
- [14] Mason, M.R., Mashuta, M.S., Richardson, J.F., (1997) Angew. Chem. 109, 249; (1997) Angew. Chem. Int. Ed. Engl., 36, 2339.
- [15] Keys, A., Bott, S., Barron, A. R., (1996) Chem. Commun., 2339.
- [16] Chippendale, A. M., Brecl, S. J., Cowley, A. R., Simpson, W. M., (1996) Chem. Mater., 8, 2259.
- [17] Dhingra, S. S., Haushalter, R. C., (1993) J. Chem. Soc., Chem. Commun., 1665.
- [18] Begley, M.J., Sowerby, D.B., Wesolek, D.M., Silvestru, C., Haiduc, I., (1986) J. Organomet. Chem., 316, 281.
- [19] Golubski, Z.B., (1980) Synthesis, 632.
- [20] Katzin, L.I., Mason, G.W., Peppard, D.F., (1978) Spectrochim. Acta, 34, 51.
- [21] (a) Hoskins, B.F., Tiekink, E.R.T., Vecchiet, R., Winter, G., (1984) Inorg. Chem. Acta, 90, 197.
 - (b) Bhattacharya, B., Seth, N., Srivastava, D. K., Gupta, V. D., Noth, H., Thomann Albach, M., (1996) J. Chem. Soc. Dalton Trans., 2815.
- [22] Kosolapoff, G.M., (1950) "Organophosphorous Compounds", Wiley, New York.
- [23] Goldwhite, H., Saunders, B.C., (1957) J. Chem. Soc., 2409.
- [24] Zweirzak, A., Kluba, M., (1971) Tetrahedron, 27, 3171.